Viscosities, Refractive Indexes, and Conductivities of Phosphoric Acid in *N*,*N*-Dimethylformamide + Water Mixtures

Lyubov P. Safonova,* Alexander A. Pryahin, Julia A. Fadeeva, and Ludmila E. Shmukler

Institute of Solution Chemistry of Russian Academy of Sciences, Akademicheskaya Str., 1, 153045 Ivanovo, Russia

The viscosities at T = (298.15 to 338.15 K), refractive indexes, and specific conductivities of phosphoric acid in *N*,*N*-dimethylformamide + water mixtures at T = 298.15 K have been measured over the whole concentration range of components. The excess properties of the system as functions of component ratio have been calculated and fitted to the Redlich–Kister equation. Dependence of these properties on composition has been discussed.

Introduction

Earlier, with different methods of physical–chemical analysis (viscosimetry, conductometry, IR-spectroscopy, etc.), the binary phosphoric acid + N,N-dimethylformamide (DMF) system was studied.^{1–3} It was shown that phosphoric acid in DMF solutions is very weakly dissociated. The conclusions on prevalence of strong intermolecular interactions in the system resulting in H-bonded complex formation were formulated. The dissociation degree of phosphoric acid most probably changes significantly with addition of water to nonaqueous solvent (DMF) influencing the character of interactions in aqueous–organic H₃PO₄ solution.

However, only properties of corresponding binary systems have been reported in the literature. In numerous works, the viscosity,⁴⁻⁹ refractive index,^{7,8,10} and volumetric properties^{4,5,11,12} of binary H₂O + DMF and H₃PO₄ + H₂O mixtures have been studied. Also, conductivity of H₃PO₄ solutions in water is available in the literature.^{13–15} On the other hand, there are no studies of the H₃PO₄ + DMF system except for our earlier works.^{1–3}

The aim of this work was to study interactions in the H_3PO_4 + DMF + H_2O system by physical-chemical methods.

Experimental

100 % phosphoric acid was prepared by dissolving an excess of P_2O_5 (ASC reagent, ≥ 98.0 %, Aldrich) in aqueous phosphoric acid (≥ 85 wt. % in H_2O 99.999 %, Aldrich). The excess related to 100 % H_3PO_4 was determined by titration with a solution of NaOH (OP-300, Radelkis). Extra water was added to bring down the concentration to as close to 100 % H_3PO_4 as possible. The H_3PO_4 concentration obtained this way differs by less than 1 % from 100 %.

N,*N*-Dimethylformamide (Biotech grade solvent, 99.9+ %, Aldrich) was doubly fractionally distilled in a vacuum (P = 133 Pa) at T = 310.15 K, and only the intermediate fraction was used. The distilled solvent was dried using molecular sieves with a pore diameter of 0.4 nm for 72 h and repeatedly fractionally distilled, collecting the intermediate fraction. The water content in DMF, determined by Karl Fischer titration, was less than 0.03 %. Double-distilled water with specific conductance of $1 \cdot 10^{-6}$ S·cm⁻¹ was used. All solutions were prepared by mass using a high-resolution balance (ME215S, Sartorius) with an uncertainty of $\pm 1 \cdot 10^{-5}$ g. Ternary mixtures were prepared by mixing a mixed solvent (H₂O + DMF at known composition) with pure H₃PO₄. Ternary systems were composed of series of these pseudobinary mixtures H₃PO₄ + S, where S is mixed solvent H₂O + DMF. The uncertainty in the mole fraction is less than $\pm 1 \cdot 10^{-4}$.

Refraction index (n_D) for the sodium D-line was measured using a refractometer (IRF-454B, KOMZ, Russia) thermostatted to within \pm 0.02 K. The uncertainty in the measurements was \pm 0.001 units.

Specific conductivities (κ) were determined with an LCRmeter (LCR817, GW Instek, Taiwan) at a frequency of 1000 Hz using the three-electrode measuring cell. The cell contained three parallel platinum discs, each with a 10 mm diameter. The cell constant was obtained from measurements at 298 K with 0.1 mol·L⁻¹ aqueous KCl solution (specific conductivity 12.88 mS·cm⁻¹ at 298.15 K) A thermostatically controlled bath (\pm 0.01 K) was used for all measurements. Relative uncertainty was calculated to be \pm 0.2 % for specific conductivity.

For viscosity measurement in the viscosity range (0.5 to 2.5) mPa·s, the Ubbelhode viscometer had an automatic measurement outflow time (the accuracy of the outflow time measurement is \pm 0.01 s). A thermostatically controlled bath (\pm 0.01 K) was used for all measurements. The viscometer was calibrated with water, acetone, and 1-propanol. The uncertainty in the measurements was \pm 0.001 mPa·s. For viscosity measurement in the viscosity range higher than 2.5 mPa·s, the BROOKFIELD DV-II+Pro rotational viscometer was used. The accuracy of the oven control was \pm 0.01 K. Relative uncertainty in the measurements was \pm 1 %.

For recalculation of kinematic viscosity ν measured with an Ubbelhode viscometer to dynamic ones η and calculation of molecular refraction, the density of solutions was measured by a vibrating glass tube densimeter (VIP-2M, TERMEX, Russia). The accuracy of the oven control was \pm 0.01 K. Uncertainty in the density measurement was \pm 0.0003 g·cm⁻³.

Because the phosphoric acid freezing point is T = 315.35 K, all experimental points for pure phosphoric acid at T = 298.15

^{*} To whom correspondence should be addressed: E-mail: lps@isc-ras.ru. Tel.: +7 4932 351679. Fax: +7 4932 336237.

Table 1. Specific Conductivities, κ , for Different Concentration Solutions of H₃PO₄ (x_{H_3} PO₄) in DMF and Mixed Solvent H₂O + DMF with Various Values of Mole Fractions of DMF at T =298.15 K

	DMF	0.	07 DMF	0.3 DMF		
xH ₃ PO ₄	$10^4 \ \kappa/\text{S} \cdot \text{cm}^{-1}$	xH ₃ PO ₄	$10^4 \ \kappa/\text{S} \cdot \text{cm}^{-1}$	xH ₃ PO ₄	$10^4 \kappa/\mathrm{S}\cdot\mathrm{cm}^{-1}$	
0.1033	2.391	0.0465	456.8	0.0501	40.37	
0.1181	2.504	0.0935	845.6	0.1000	79.78	
0.1422	2.403	0.1886	1052	0.1996	142.0	
0.1793	2.221	0.2839	867.1	0.2995	151.1	
0.1860	2.011	0.3824	679.4	0.3996	140.4	
0.2652	1.504	0.4811	562.3	0.5001	137.4	
0.3591	1.612	0.5832	4835	0.5495	141.0	
0.6001	7.703	0.6847	457.3	0.5997	153.8	
0.9143	178.0	0.7869	437.0	0.6490	169.6	
1	385.0 ^a	0.8902	421.2	0.7001	195.0	
				0.7351	200.6	
				0.7827	242.3	
				0.8989	324.7	

 a The value was obtained by extrapolation of experimental dependences for solutions to pure $H_{3}PO_{4}$.

Figure 1. Specific conductivities of H_3PO_4 solutions in mixed solvent H_2O + DMF as functions of acid concentration at T = 298.15 K. Concentration of DMF in mixed solvent H_2O + DMF is: \blacksquare , 0 (the data from ref 15); \bullet , 0.07; \blacktriangle , 0.3; \checkmark , 1.

K and T = 308.15 K were obtained by extrapolation of experimental dependences for solutions to pure H₃PO₄.

Results and Discussion

The results obtained for the ternary system phosphoric acid + N,N-dimethylformamide + water have been discussed as a binary solution of H₃PO₄ in mixed solvent (H₂O + DMF). On the basis of experimental data, some excess properties were calculated.

Conductivity. Specific conductivities κ of H₃PO₄ solution in mixed solvent H₂O + DMF at T = 298.15 K are listed in Table 1, and dependences of ones as acid concentrations are presented in Figure 1. As one knows, the dissociation constants of phosphoric acid in water are the following:^{16,17} pK₁ = 2.148; pK₂ = 7.199; pK₃ = 12.35 ± 0.02. As one can see, the second and third dissociation constants are rather small. Therefore, in aqueous solution, phosphoric acid can be regarded as a 1:1 electrolyte. With acid concentration rising, the number of ions per volume unit increases. On the other hand, the dissociation degree decreases, and viscosity of a solution increases lowering the ion mobility. All these effects lead to the extreme on the conductivity concentration dependence for aqueous H₃PO₄

Table 2. Refraction Indexes, n_D , for Different Concentration Solutions of H₃PO₄, xH₃PO₄, in H₂O, DMF, and Mixed Solvent H₂O + DMF with Various Values of Mole Fraction of DMF at T =298.15 K

	n _D						
rH_PO.	H ₂ O	0.1 DMF	0.2 DMF	0.4 DMF	0.6 DMF	0.8 DMF	DMF
0	1 254	1 271	1 206	1 412	1 426	1 429	1 424
0 1	1.554	1.3/1	1.560	1.412	1.420	1.420	1.424
0.1	1.376	1.390	1.403	1.423	1 443	1.436	1 445
0.2	1.413	1.421	1.429	1.442	1.450	1.453	1.453
0.4	1.427	1.433	1.439	1.449	1.455	1.459	1.459
0.5	1.438	1.443	1.448	1.455	1.460	1.462	1.464
0.6	1.448	1.451	1.454	1.459	1.462	1.465	1.466
0.7	1.454	1.456	1.458	1.461	1.464	1.465	1.467
0.8	1.458	1.459	1.460	1.462	1.463	1.464	1.465
0.9	1.459	1.459	1.460	1.460	1.461	1.462	1.462
1	1.457^{a}						

 a The value was obtained by extrapolation of experimental dependences for solutions to pure H₃PO₄.

 $x_{H_3PO_4}$

Figure 2. Excess molecular indexes of H_3PO_4 solutions in mixed solvent $H_2O + DMF$ as functions of acid concentration at T = 298.15 K. Concentration of DMF in mixed solvent $H_2O + DMF$ is: solid triangle pointing right, 0; solid triangle pointing left, 0.1; \blacktriangle , 0.2; \blacktriangledown , 0.4; \blacksquare , 0.6; \triangle , 0.8; \bigcirc , 1.

Table 3. Coefficients of the Redlich–Kister Equation for $R_{\rm M}^{\rm E}$ of H₃PO₄ + S (H₂O + DMF) for Various Values of Mole Fraction of DMF in Mixed Solvent S at T = 298.15 K

$\begin{array}{l} \text{composition of} \\ \text{H}_2\text{O} + \text{DMF} \end{array}$	A_0	A_1	A_2	δ
H ₂ O	-0.1742	1.6246	-0.0826	0.0078
0.1 DMF	-0.0295	1.4380	-0.1084	0.0024
0.2 DMF	0.5444	1.3501	0.3119	0.0009
0.4 DMF	0.5706	0.7029	0.0421	0.0014
0.6 DMF	0.11598	1.0601	1.3884	0.0016
0.8 DMF	0.6328	0.1579	-0.4539	0.0040
DMF	-1.87507	0.6988	-0.4022	0.0067

solution (Figure 1). The same behavior is observed for most electrolyte aqueous solutions.¹⁸ As can be seen (Figure 1), the increase of DMF content in mixed solvent diminishes dramatically the specific conductivity of solutions. This decrease in the κ values may be attributed to the decrease of acid dissociation degree (because the value of the dielectric constant of mixed solvent H₂O + DMF reduces). Also, a decrease in the κ values may be attributed to the increase in the viscosity of mixed solvent. At DMF concentration in mixed solvent H₂O + DMF higher than 0.3 mol fraction (m.f.), the maximum for the dependence of specific conductivity on acid concentrations is not observed.

Molecular Refraction. Refractive indexes n_D of H₃PO₄ solution in mixed solvent H₂O + DMF at T = 298.15 K are

	η/mPa•s				η/mPa•s						
xH ₃ PO ₄	<i>T</i> /K = 298.15	T/K = 308.15	<i>T</i> /K = 318.15	<i>T</i> /K = 328.15	<i>T</i> /K = 338.15	xH_3PO_4	<i>T</i> /K = 298.15	<i>T</i> /K = 308.15	<i>T</i> /K = 318.15	<i>T</i> /K = 328.15	<i>T</i> /K = 338.15
	H ₂ O 0.5 DMF										
0	0.890	0.730	0.610	0.52	0.450	0	1.83	1.45	1.3	0.97	0.82
0.1004	3.23	2.58	2.14	1.78	1.54	0.1001	7.92	5.83	1.18	3.54	2.96
0.1992	7.47	5.85	4.65	3.90	3.24	0.2001	33.4	23.0	16.4	12.3	9.57
0.3002	14.50	10.9	8.55	6.84	5.67	0.2994	115	68.9	46.6	32.8	25.0
0.4001	25.5	19.0	13.8	10.7	8.58	0.4002	242	143	88.8	59.1	41.7
0.4980	39.0	27.4	19.3	14.6	11.3	0.4972	454	251	149	93.6	63.3
0.6003	58.5	37.8	27.0	19.7	15.4	0.5496	559	312	1/8	110	74.4
0.6982	//./	51.6	35.7	25.8	19.3	0.5963	609	334	188	118	78.3
0.8051	110	/5.0	51.0	30.0	20.5	0.0343	004 557 0	329	190.2	119	/8.0 77.4
0.8900	1405	94.2	03.3	44.0	32.3 40.5	0.0849	557.9 431.0	305	181	115	67.2
1	189.0	120	19.2	55.5	40.5	0.7499	451.9	247	149	98.4	50.4
						0.8002	235.7	145	95.4	65.1	45.6
		0.1 DN	/IF					0.6 D	MF		
0	1.74	1.33	1.06	0.870	0.730	0	1.51	1.23	1.03	0.87	0.75
0.0953	5.06	3.97	3.24	2.44	2.45	0.1035	6.42	4.94	3.86	3.1	2.54
0.1919	11.7	8.78	6.77	5.37	4.43	0.1991	30.2	21.2	14.9	11.2	8.68
0.2883	22.3	16.1	12.0	9.40	7.51	0.2997	115	72.0	47.2	33.1	24.5
0.3874	38.8	27.5	19.9	15.1	11.7	0.3994	307	172	106	70.2	48.6
0.4864	60.3	40.6	28.3	20.8	15.9	0.4983	651	343	197	120	/9.5
0.5884	84.5	56.1	37.8	27.5	20.5	0.5535	812	413	231	141	90.7
0.0893	110	/1.8	47.0	34.1	25.2	0.5818	885	430	230	157	97.2
0.7904	129	04.0 100	50.4	39.0 47.2	29.5	0.0474	9170 7010	400	239	130	105 97 2
0.8922	100	100	08.0	47.5	34.0	0.7040	606	390	108	137	87.8
						0.7493	474	266	164	104	02.0 71 /
						0.8998	268	162	104	70.5	50.1
		0.2 DN	ΛF					0.7 D	MF		
0	2.35	1.76	1.37	1.09	0.89	0	1.24	1.04	0.890	0.770	0.66
0.1001	7.80	5.83	4.5	3.57	3.00	0.0997	4.69	3.73	2.99	2.47	2.14
0.2012	20.9	15.3	11.5	9.12	7.41	0.2004	24.6	17.5	12.6	9.72	7.8
0.2993	43.8	30.6	21.4	15.8	12.2	0.2835	91.2	58.3	38.8	27.7	20.8
0.3963	/8.3	51.4	35.3	25.3	19.0	0.4008	337	193	117	75.9	51.1
0.4996	119	/6.5	50.8	35.5	26.0	0.4999	/53	387	221	134	85.5
0.5345	152	02.2	54.0 62.2	20.4 42.6	20.1	0.5475	932	400	209	101	102
0.6007	151	92.0	60.3	42.0	24.2	0.3974	1123	505	310	101	115
0.0947	109	103	72.6	47.5	34.2	0.0492	1110	585	316	192	127
0.901	186	112	76.8	52.6	38.3	0.7294	992	511	288	172	111
0.901	100	117	70.0	52.0	50.5	0.7997	543	312	181	116	78.9
						0.8978	319	185	118	79.5	55.2
		0.3 DN	ΛF					0.8 D	MF		
0	2.48	1.86	1.44	1.15	0.95	0	1.030	0.890	0.780	0.68	0.61
0.1006	9.15	6.66	5.07	4.02	3.24	0.1044	3.78	3.10	2.61	2.22	1.87
0.1866	27.7	19.4	14.1	10.8	8.46	0.2022	19.3	14.2	10.5	8.18	6.57
0.3125	71.4	47.4	32.9	23.5	17.9	0.3010	107	67.2	44.2	31.0	22.3
0.4031	128	80.7	52.6	36.6	26.4	0.4003	287	167	102	67.5	45.9
0.4996	209	119	/6.5	52.2	36.9	0.4974	918	449	253	151	96.5
0.5473	228	130	80.1	58.2 62.7	40.0	0.5487	1272	033	337	195	120
0.5942	240	143	91.0	63.6	42.9	0.5972	1578	815	397 415	227	144
0.0230	249	149	93.0	62.8	43.7	0.0303	1056	720	384	239	147
0.7601	241	138	90.0 80 /	62.1	43.2	0.7004	1003	567	318	188	121
0.7948	227	137	88.2	60.9	42.4	0.8014	715	396	234	144	94 5
0.8978	203	124	82.2	56.7	40.6	0.9006	320	188	119	81.0	56.1
		0.4 DN	ΔF					0.9 D	MF		
0	2.22	1.71	1.35	1.09	0.950	0	0.89	0.78	0.7	0.62	0.56
0.1041	9.67	7.08	5.31	4.13	3.46	0.1004	2.49	2.11	1.83	1.58	1.4
0.1999	32.6	22.2	15.8	11.9	9.18	0.1994	12.7	9.84	7.56	6.11	5.03
0.3003	89.5	55.5	37.2	26.8	20.0	0.2999	90.9	58.7	39.7	28.1	20.8
0.4013	151.5	91.2	58.8	40.5	28.7	0.4009	413.3	235	140	87.6	58.6
0.4999	322	180	113	73.2	49.6	0.5007	1123	562	303	175	115
0.5343	350	197	120	78.7	53.6	0.5487	1620	762	397	227	137
0.5811	384	218	131	85.0	58.2	0.5979	2016	936	501	270	166
0.6503	385	218	133	87.6	60.9	0.6498	2465	1038	535	303	176
0.7001	361	202	125	82.5	56.5	0.6996	2274	1059	522	286	172
0.7988	275	164	104	70.8	48.9	0.7783	1509	735	400	227	141
0.8978	208	127	84.6	58.8	41.2	0.7988	1353	595	346	197	123
						0.9119	371	215	134	88.8	62.2

Table 4. Viscosities, η , for Different Concentration Solutions of H₃PO₄, xH₃PO₄, in H₂O and Mixed Solvent H₂O + DMF with Various Values of Mole Fractions of DMF^a from $T = (298.15 \text{ to } 328.15) \text{ K}^b$

^{*a*} Viscosities of H_3PO_4 solutions in DMF at T = (298.15 to 328.15 K) are presented in ref 1. ^{*b*} The values in italic type were obtained by extrapolation of experimental dependences for solutions to pure H_3PO_4 .

listed in Table 2. Using that experimental data, the Lorentz–Lorenz molecular refraction $(R_{\rm M})$ was calculated:

$$R_{\rm M} = \frac{n_{\rm D}^2 - 1}{n_{\rm D}^2 + 2} \cdot \frac{M}{\rho} \tag{1}$$

where M and ρ are average molecular mass and density of a solution.

The excess molecular refractions $R_{\rm M}^{\rm E}$ for binary H₃PO₄ + S were calculated from the equation

$$R_{\rm M}^{\rm E} = R_{\rm M}^{\rm exptl} - (x_{\rm H_3PO_4} R_{\rm M}({\rm H_2O}) + x_{\rm s} R_{\rm M}({\rm S}))$$
(2)

where S denotes mixed solvent $H_2O + DMF$.

The dependence of excess molecular refractions at T = 298.15 K as acid concentrations is presented in Figure 2.

As one can see, the values of $R_{\rm M}^{\rm E}$ are positive for H₃PO₄ solutions in DMF and mixed solvent H₂O + DMF with high DMF concentrations at all H₃PO₄ concentrations. For H₃PO₄ solutions in water and mixed solvent H₂O + DMF with low DMF concentrations, values of $R_{\rm M}^{\rm E}$ are positive only at high H₃PO₄ concentrations.

Values of $R_{\rm M}^{\rm E}$ were fitted with the Redlich-Kister equation

$$R_{\rm M}^{\rm E} = x_{\rm H_3PO_4} x_{\rm S} \sum_{i=0}^{m} A_i (x_{\rm H_3PO_4} - x_{\rm S})^i$$
(3)

The root-mean-square deviation from the fitted curve was defined by the following equation

$$\delta = \left[\sum_{i=1}^{n} \left(R_{\mathrm{M}}^{\mathrm{E}}(\mathrm{exptl}) - R_{\mathrm{M}}^{\mathrm{E}}(\mathrm{calcd})\right)^{2} / n\right]^{1/2}$$
(4)

The coefficients of A_i and δ values are presented in Table 3.

Viscosity. The experimental viscosities (η) as acid concentrations in mixed solvent H₂O + DMF at T = (298.15 to 338.15 K) are given in Table 4. The viscosity of aqueous H₃PO₄ solutions increases steadily with growing acid concentration (Table 4). For solutions of phosphoric acid in DMF and mixed solvent (when $x_{\text{DMF}} > 0.3 \text{ m.f.}$), the acid concentration dependence of viscosity has a maximum at about 0.6 m.f. H₃PO₄, the height of which decreases with increasing temperature.

 $x_{H_3PO_4}$

Figure 3. Values of ΔH_{η}^{\mp} (unclosed symbols) and $(-T\Delta S_{\eta}^{\mp})$ (closed symbols) of H_3PO_4 solutions in mixed solvent $H_2O + DMF$ as a function of acid concentration. Concentration of DMF in mixed solvent $H_2O + DMF$ is: \blacksquare , \Box , 0; \bullet , \bigcirc , 0.5; \blacktriangle , Δ , 0.8.

The thermodynamic functions of activation of viscous flow have been calculated using experimental viscosities at various temperatures.

$$\Delta G_{\eta}^{\#} = RT \left(\ln(\eta) - \ln\left(\frac{hN_A}{V}\right) \right)$$
(5)

where h and N_A are the Planck constant and Avogadro constant.

$$\Delta S_{\eta}^{\#} = -\frac{\partial \Delta G_{\eta}^{\#}}{\partial T} \tag{6}$$

$$\Delta H_{\eta}^{\#} = \Delta G_{\eta}^{\#} + T \Delta S_{\eta}^{\#} \tag{7}$$

In Figure 3, dependences of $\Delta H_{\eta}^{\#}$ and $\Delta S_{\eta}^{\#}$ calculated for H_3PO_4 solutions in H_2O and mixed solvent $H_2O + DMF$ as acid concentrations at T = 298.15 K are shown as examples. As one can see, the main contribution to the activation free energy $\Delta G_{\eta}^{\#}$ comes from the enthalpy term at all acid concentrations and all mixed solvent compositions.

The viscous flow activation free energy of the binary mixture is additive on a mole fraction basis

$$\Delta G_{\rm mix}^{\#} = x_{\rm H_3PO_4} \Delta G_{\rm H_3PO_4}^{\#} + x_{\rm S} \Delta G_{\rm S}^{\#}$$
(8)

Using this equation and eq 5, the excess viscosities for pseudobinary $H_3PO_4 + S$ mixtures were calculated (S denotes mixed solvent $H_2O + DMF$)

$$\eta^{\rm E} = \eta_{\rm mix}^{\rm exptl} - \exp(x_{\rm H_3PO_4} \ln(\eta_{\rm H_3PO_4} V_{\rm H_3PO_4}) + x_{\rm S} \ln(\eta_{\rm S} V_{\rm S}) - \ln(V_{\rm mix}))$$
(9)

Values of η^{E} were fitted with the Redlich–Kister equation, and the coefficients of that and the root-mean-square deviation from fitted curve δ are presented in Table 5.

In Figure 4, the dependence of the excess viscosity on acid concentrations at T = 298.15 K is shown. At DMF concentration higher than 0.3 m.f. in mixed solvent, the dependence gets extreme character. The extreme intensity increases with increasing DMF concentration in mixed solvent $H_2O + DMF$. It has been suggested in our earlier study¹ of $H_3PO_4 + DMF$ mixtures that this extreme is caused by formation of complexes with presumable composition of H_3PO_4 :DMF = 2:1. Then, addition of water in DMF should be varied of maximum position on the dependence of the excess viscosity on acid concentrations toward lower acid concentration, but this does not take place. The independence of maximum position of $\eta^{\rm E}$ on acid concentrations (at 0.6 m.f. acid) from composition of mixed solvent H₂O + DMF possibly results from association processes in phosphoric acid itself. It is well known that there is equilibrium in 100 % of H_3PO_4 in the liquid state

$$2H_3PO_4 \leftrightarrow H_4P_2O_7 + H_2O \tag{10}$$

and about 15 % of P atoms are in the pyrophosphoric acid.¹⁹ Probably, addition solvents to 100 % H_3PO_4 lead to equilibrium mixing to the left. It should be noticed that the similar behavior of viscosity concentration dependence is observed for phosphoric acid mixtures with the other organic solvents.²⁰

Conclusions

In summary, there are several processes in the studied solution, namely, ionic dissociation, molecular association, and destruction/formation of H-bonds. Each of them dominates in a certain region of concentration of phosphoric acid and mixed solvent.

Table 5. Coefficients of the Redlich–Kister Equation for η^{E} of $H_{3}PO_{4} + S (H_{2}O + DMF)$ for Various Values of Mole Fraction of DMF in Mixed Solvent S from T = (298.15 to 328.15) K

<i>T</i> /K	$A_0/Pa \cdot s$	$A_1/Pa \cdot s$	A ₂ /Pa•s	A₃/Pa∙s	A_4 /Pa•s	A₅/Pa∙s	δ/Pa•s			
			H ₂	0						
298.15	-0.420	0.0554	-0.0411				0.0015			
308.15	-0.256	0.0396	-0.0226				0.0011			
318.15	-0.163	0.0312	-0.0096				0.0008			
328.15	-0.112	0.0192	-0.0077				0.0004			
338.15	-0.0780	0.0142	-0.0022				0.0003			
0.1 DMF										
298.15	-0.292	0.1213	-0.0451				0.0016			
308.15	-0.1/4	0.0747	-0.0428				0.0010			
318.15	-0.110	0.0492	-0.0193				0.0004			
328.15	-0.071	0.0307	-0.0203				0.0002			
556.15 -0.049 0.0228 -0.0108 0.0001										
298 15	-0.0279	0.292	-0.1596	JMF			0.0034			
308.15	-0.0279	0.164	-0.0977				0.0016			
318.15	-0.0084	0.102	-0.0723				0.0011			
328.15	-0.0070	0.0528	-0.0576				0.0007			
338.15	-0.0028	0.0370	-0.0407				0.0005			
			0.3 E	DMF						
298.15	0.329	0.518	-0.581				0.0117			
308.15	0.182	0.270	-0.339				0.0061			
318.15	0.109	0.157	-0.198				0.0033			
328.15	0.0/11	0.101	-0.126				0.0020			
556.15	0.0437	0.0390	-0.080				0.0011			
208 15	0.777	1 677	-1.25	-2 30			0.0161			
308.15	0.411	0.873	-0.667	-1.23			0.0082			
318.15	0.242	0.484	-0.381	-0.646			0.0050			
328.15	0.151	0.293	-0.228	-0.256			0.0028			
338.15	0.0985	0.189	-0.154				0.0018			
			0.5 E	MF						
298.15	1.501	2.84	-3.35	-4.14	2.19		0.0240			
308.15	0.800	1.45	-1.81	-2.06	1.23		0.0119			
318.15	0.443	0.764	-0.906	-1.006	0.561		0.0054			
328.15	0.265	0.443	-0.476	-0.557	0.236		0.0026			
338.15	0.173	0.268	-0.294	-0.334	0.111		0.0016			
209 15	2.27	4 70	0.6 E	0MF	1 20		0.0454			
296.15	2.37	4.70	-2.53	-3.38	4.38		0.0434			
318 15	0.644	1 19	-1.33	-1.64	0.906		0.0185			
328.15	0.384	0.684	-0.729	-0.915	0.436		0.0047			
338.15	0.241	0.393	-0.433	-0.486	0.254		0.0025			
			0.7 E	MF						
298.15	2.73	9.29	-2.74	-27.8	-1.227	23.3	0.0347			
308.15	1.36	4.31	-1.12	-11.8	-0.949	9.32	0.0170			
318.15	0.748	2.23	-0.672	-5.98	-0.382	4.72	0.0088			
328.15	0.437	1.17	-0.419 -0.206	-2.92 -1.73	-0.139 -0.170	2.22	0.0043			
556.15	0.270	0.712	0.200	1.75	0.170	1.50	0.0050			
298.15	3 58	14.6	-2 91	-48 5	-3.26	43.4	0.0446			
308.15	1.72	6.68	-1.05	-20.9	-1.99	18.1	0.0204			
318.15	0.912	3.19	-0.580	-9.11	-0.875	7.45	0.0071			
328.15	0.522	1.70	-0.354	-4.66	-0.411	3.77	0.0037			
338.15	0.321	0.989	-0.225	-2.61	-0.231	2.06	0.0023			
0.9 DMF										
298.15	4.52	20.1	4.94	-53.5	-16.6	39.5	0.0851			
308.15	2.14	8.36	1.20	-20.9	-5.86	14.7	0.0310			
518.15	1.13	3.98	0.408	-8.96	-2.50	5.79	0.0100			
526.15 338.15	0.029	2.00 1.12	0.0873	-4.49 -2.22	-1.134 -0.462	2.88 1.30	0.0055			
DME	0.505	1.14	0.0090	<i>L.LL</i>	0.702	1.50	0.0023			
DMF" 208-15	6.22	34.0	11.2	-104.7	_32.0	85.0	0 2021			
308.15	2.96	15.5	5.92	-42.2	-15.6	31.6	0.0778			
318.15	1.57	7.58	2.12	-20.5	-6.34	15.7	0.0339			
328.15	0.837	3.57	1.005	-8.49	-2.98	5.79	0.0129			
338.15	0.481	1.93	0.566	-4.25	-1.63	2.73	0.0074			

^a Calculated from ref 1.

Conductivity data showed that ionic dissociation of phosphoric acid decreases with DMF content and increases in mixed solvent H_2O + DMF. At DMF concentrations in mixed solvent H_2O + DMF more than 0.3 m.f., ionic

dissociation of H₃PO₄ becomes small. The dependence of some properties (η , n_D) of H₃PO₄ solutions in mixed solvent H₂O + DMF (when $x_{DMF} > 0.3$ m.f.) as acid concentrations has a maximum with position at about 0.6 acid mole fraction

 $x_{H_3PO_4}$

Figure 4. Excess viscosities of H_3PO_4 solutions in mixed solvent $H_2O + DMF$ as functions of acid concentration at 298.15 K. Concentration of DMF in mixed solvent $H_2O + DMF$ is: solid arrow pointing right, 0; •, 0.2; •, 0.4; •, 0.6; •, 0.8; solid arrow pointing left, 1.

independently of $H_2O + DMF$ composition. This is evidently caused by the molecular association processes in the acid itself.

Literature Cited

- Fadeeva, Ju.A.; Shmukler, L. E.; Safonova, L. P. Intermolecular Interactions in Orthophosphoric Acid - N,N-Dimethylformamide System According to Viscometric Data. *Russ. Chem. Bull.* 2005, 54, 2325–2329.
- (2) Fadeeva, Ju. A.; Demina, L. I.; Gorbunova, Ju. G.; Shmukler, L. E.; Safonova, L. P.; Tsivadze, A. Yu. Orthophosphoric Acid-*N*,*N*-Dimethylformamide System: IR Study. *Russ. J. Coord. Chem.* **2003**, 29, 515–518.
- (3) Fadeeva, Ju. A.; Shmukler, L. E.; Safonova, L. P. Physicochemical Properties of the H 3 PO 4-Dimethylformamide System. *Russ. J. Gen. Chem.* 2004, 74, 174–178.
- (4) Garcia, B.; Alcalde, R.; Leal, J. M.; Matos, J. S. Solute-Solvent Interactions in Amide-Water Mixed Solvents. J. Phys. Chem. B 1997, 101, 7991–7997.
- (5) Han, K.-J.; Oh, J.-H.; Park, S.-J.; Gmehling, J. Excess Molar Volumes and Viscosity Deviations for the Ternary System N,N-Dimethylformamide + N-Methylformamide + Water and the Binary Subsystems at 298.15 K. J. Chem. Eng. Data 2005, 50, 1951–1955.

- (6) Hickey, K.; Waghorne, W. E.; Sacco, A. Comparison of the Activation Free Energies for Viscous Flow and for Diffusion in Dilute Solutions, Derivation of the Expression for the Effect of the Solute on the Activation Free Energy of Diffusion of the Solvent, and Application to Solutions of N,N-Dimethylformamide in Water, Methanol, and Acctonitrile. J. Phys. Chem. A 2001, 105, 1093–1096.
- (7) Della Volpe, C.; Guarlno, G.; Sartorlo, R.; Vltagllano, V. Diffusion, Viscosity, and Refractivity Data on the System Dimethylformamide-Water at 20 and 400C. J. Chem. Eng. Data 1986, 31, 37–40.
- (8) Aminabhavi, T. M.; Gopalakrishna, B. Density, Viscosity, Refractive Index, and Speed of Sound in Aqueous Mixtures of N,N-Dimethylformamide, Dimethyl Sulfoxide, N,N-Dimethylacetamide, Acetinitrile, Ethylene Glycol, Diethylene Glycol, 1,4-Dioxane, Tetrahydrofuran, 2-Methoxyethanol, and 2-Ethoxyethanol at 298. 15 K. J. Chem. Eng. Data 1995, 40, 856–861.
- (9) Edwards, O.; Huffman, E. Viscosity of Aqueous Solutions of Phosphoric Acid at 25°C. Ind. Eng. Chem. 1958, 3, 145–146.
- (10) Edwards, O. W.; Dunn, R. L.; Hatfield, J. D. Refractive Index of Phosphoric Acid Solutions at 25 °C. J. Chem. Eng. Data 1964, 1, 508–509.
- (11) Scharlin, P.; Steinby, K.; Domanska, U. Volumetric Properties of Binary Mixtures of *N*,*N*-Dimethylformamide with Water or Water-d2 at Temperatures from 277.13 to 318.15 K. *J. Chem. Thermodyn.* 2002, 34, 927–957.
- (12) Egan, E. P.; Luff, B. B. Density of Aqueous Solutions of Phosphoric Acid. Measurements at 15 to 80 °C. *Ind. Eng. Chem.* 1955, 47, 1280– 1281.
- (13) Chim, D.-T.; Chang, H. H. On the Conductivity of Phosphoric Acid Electrolyte. J. Appl. Electrochem. **1989**, *19*, 95–99.
- (14) Tsurko, E. N.; Neueder, R.; Barthe, J.; Apelblat, A. Conductivity of Phosphoric Acid, Sodium, Potassium, and Ammonium Phosphates in Dilute Aqueous Solutions from 278.15 to 308.15 K. J. Solution Chem. **1999**, 28, 973–999.
- (15) Mason, C.; Culvern, J. Electrical Conductivity of Ortophosphoric Acid and of Sodium and Potassium Dehydrogen Phosphates at 25°C. J. Am. Chem. Soc. 1949, 71, 2387–2393.
- (16) Handbook of Chemistry and Physics/http://www.hbcpnetbase.com/.
- (17) Corbridge, D. E. C. *Phosphorus 2000. Chemistry, biochemistry & technology*; Elsevier: Amsterdam, 2000.
- (18) Barthel, J. M. G.; Krienke, H.; Kurz, W. Physical chemistry of electrolyte solutions: modern aspects; Springer: Darmstadt, Steinkopff, New York, 1998.
- (19) Jameson, R. F. The composition of the "strong" phosphoric acids. J. Chem. Soc. 1959, 752–759.
- (20) Krestov, G. A.; Afanasiev, V. N.; Efremova, L. S. Handbook. Physical and Chemical properties of binary solvents; Khimiya: Leningrad, 1988.

Received for review February 12, 2008. Accepted March 28, 2008. We would like to thank the Russian Foundation of Basic Research (project No 08-03-00288a) for the financial support of this work.

JE8001046